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ABSTRACT
Lethz2 andlet B=(B...... B.).where BLCN={1.23.  tfori=1,.... .
Denote by g, (n) the number of representations of n in the form n = b, - -+ by,

where b, € B If g (1) ™0 for all n ™ no. then B is an asymptotic mudtiplicative
system of order h. The set B is an asymptotic multiplicative basis of order h if
n = b, b, is solvable with b € B for all n ™ n,. Denote by g(n) the number
of such representations of n. Let M(h) be the set of all pairs (s, t). where
s =liminf, .. go{n) and ¢ = limsup, .. g5 (n) for some multiplicative system 4
of order h. It is proved that
M) =L 0T ENFU{s. ) s = 10 ),

In particular. it follows that s = 2 implies ¢ = x. A corollary is a theorem of
Erdds that if B is a multiplicative basis of order h = 2, then limsup,, .. g(n) ==,

Similar results are obtained for asymptotic union bases of finite subsets of N and
for asympiotic least common multiple bases of integers.

1. Introduction

Let N=1{1,2,3,...} denote the set of natural numbers. For h =2, let
B =(B,,B.,.... B,) be an h-tuple of subsets B, CNfor i =1,..., h. Denote by

g+ {n) the number of representations of n in the form
(]) ”:blbz"'bh

where b, € B, for i = 1,.... k. If g,(n)>0 for ali sufficiently large n, then 9 is
an asymptotic multiplicative system of order h.

If B is a set of natural numbers such that the h-tuple B = (B, B,..., B)is an
asymptotic multiplicative system of order h, then the set B is called an
asymptotic multiplicative basis of order h. If every n = | can be represented in the
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form (1) with b€ B for i = 1,..., h, then B is a multiplicative basis of order h.
Erdés [2] and Nesetfil and Ridl [6] proved that if B is a multiplicative basis of
order h, then limsup,_... gz (n) = . This is the multiplicative analog of an old
problem in additive number theory. For B C N U {0}, let f(n) denote the number
of representations of n in the form n = b, + b,, where b,, b, € B. Erdds and
Turéan [3] conjectured that f(n)>0 for n > n, implies limsup,_.. f(n) = . The
conjecture is still unsolved.

In this paper I generalize Erd6s’s theorem on multiplicative bases to the case
of asymptotic multiplicative systems. It is possible to construct h-tuples &B =
(By,..., By) such that

0 <liminf gu (n)=<limsup gs(n) <.
Here are two examples. Partition the set P of primes into h pairwise disjoint sets
P,,..., P, and let B; be the set of all n €N such that if p €P and p | n, then
p € P,.. Every natural number n has a unique representation in the form (1), and
50 gx(n)=1forall n=1.

A second example: Let @ =(B,,...,B,), where B,=N, B.={1,2}, and
B, ={l}fori=3,...,h. Then gz(n)=1if nisoddand gz {(n)=21if n iseven.

These examples show that liminf, .. gs(n)=1 does not imply that
limsup,_... gs(n)=o. Let M(h) consist of all pairs (s,t) such that s=
liminf, .. g+(n) and t =limsup,—. ga(n) for some asymptotic multiplicative
system % of order h. The principal result of this paper is the explicit description
of M(h). In particular, it follows from this characterization of M(h) that
liminf, .. g+ (n)=2 implies that limsup, .. gs(n)=o. Erd6és’s theorem on
multiplicative bases is an immediate corollary of this result.

In this paper I also consider asymptotic union bases. Let %(N) denote the set
of all finite subsets of N, and let &, C F(N) for i = 1,..., h. If for all but at most
finitely many S € %(N) there exist sets A; € o, such that

@) S=AU---UA,

then o * = (4,,..., o) is an asymptotic union system of order h. If &, = of C
F(N)fori=1,...,h, then & is an asymptotic union basis of order h, Union bases
have been studied by Deza and Erdds [1], Grekos [4], and Nathanson [5].
Partition N into h pairwise disjoint sets N;, let o, denote the set of all finite
subsets of N;, and let of* =(A,,...,%,). Then every § € #(N) has a unique
representation in the form (2).
Let o* be an asymptotic union system of order h, and let r(S) denote the
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number of representations of S in the form (2). Let #(N) ={S,}--,. I shall prove
that if liminf,_. r(S,)=2, then limsup,_. r(S,) = =.

The problem of representing a finite set as the union of h subsets is identical to
the problem of representing a square-free integer g as the least common
multiple of h divisors of q. This observation leads to the study of least common
multiple bases for the integers. Let B =(B,,..., By), where B, CN for i =
1,..., h. If every sufficiently large integer n can be represented in the form

3) n=[b,..., b

where b, €B, for i=1,...,h and [b,,...,b.] denotes the least common
multiple (LCM) of the integers b, then % 1s an asymptotic LCM system of order
h. If B is an asymptotic LCM system such that B =BCNforalli=1,...,h,
then the set B is an asymptotic LCM basis of order h. Nathanson [5] introduced
LCM bases and nonbases.

Let 9 be an asymptotic LCM system of order h, and let g3(n) denote the
number of representations of n in the form (3). I shall prove that
liminf, .. g&(n)=2 implies limsup, . g3(n)=1°.

Notation. Let N denote the set of natural numbers and P the prime numbers.
For n €Nand p €P, write p* || n if p* is the highest power of p that divides n.

Let X be a countably infinite set. If S C X, let | S| denote the cardinality of S.
For d ENU{0}, let [ X]* denote the collection of all S C X with |S|=d. Let
[X]™ denote the set of all finite subsets of X. Thus F(N)=[N]™.

2. Ramsey’s theorem and union bases

The main tool used in this paper is the following lemma, which is an
application of Ramsey’s theorem in combinatorial analysis. The lemma is a
refinement of a result of Nesetfil and Rudl [6).

LeMMA. Let h =2, let X be a countably infinite set, and let A* = (A, ..., HA,),
where o, C[X]™ for i=1,...,h. Suppose that the h-tuple A* satisfies the
following condition:

There exist infinitely many d € N such that for all but at most finitely many sets
S €[X]? the set theoretic equation
S=AU---UA,
has at least two solutions with
A,’E.Sd,’ forl:l,,h
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Then for every n €N there is a set T €[X]™* with the property that there exist
sets A, €A, for k =1,...,n such that

T=A U "UAu
fork=1,...,n, and
AxNA =D
for l=i<j=h
Proor. Let n €N. Choose d = n such that the condition of the Lemma

holds for sets S €[X]°.
For r=0,1,...,d, let

where for S €[ XT

h
C, ifsg U o,
Se i
C. ifSed.

Ramsay’s theorem implies that there is an infinite subset Y C X such that [ Y] is
homogeneous with respect to the sets {CH_ofor r=0,1,...,d This means that
for each r there is an i such that [Y] C C;.

Since d satisfies the condition of the Lemma, there is a set S € [ Y] such that
there exist sets A, A'e o, for i =1,..., h, where

S=AU---UA, =AU UA,

and A;# A for some i. Let d, =|A,| and d;=|A[for i=1,...,h. Then 0=
d,d'=dforalliand d =2/ ,d and d =3/ ,d’. (Note that the Lemma does
not assume that the sets A, or Af are pairwise disjoint.)

Since A; €[Y]* and A€ [Y]", the homogeneity of [Y] for r=0,1,...,d
implies that

(Y ulY]“C A

foralli=1,..., h

Suppose that d; =1 and d, =1 for some | =j <k = h (or, respectively, that
dizlandd;=1forsome 1 =j<k=h) Lete=3{,d =d Choose TE[Y]"
For each representation T = UL, T, with | T,| = d; for each i, the sets T; are
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pairwise disjoint and satisfy T, € [Y]* C . The number of such representa-
tions is the multinomial coefficient

€ >e=d=

uh“”¢>—e—d—”

Suppose that d; =d and d;, =0 for i# j, apd also that d;=d and d:=0 for

i# k. Since A, # A’ for some i, it follows that j# k. By the homogeneity of [ Y],
the fact that A, = A, =S &[Y]" implies that

(Y]} C N .

Choose T €[Y]*. Every partition of T into two disjoint sets T, and T, with
| T,| =|T,|=d generates a representation T = UL T., where T, = € «, for
i#jk and T, € and T, € of,. The number of such representations is the
binomial coefficient

This proves the Lemma.

Let d*=(d,,..., ) be an h-tuple of sets i C F(N). For S € F(N), let
r(S) denote the number of representations of S in the form S =A,U---U A,
with A, €4, for i=1,...,h Define liminfr(S)=s if for any sequential
ordering of #(N) in the form #(N) = {S.}.-, we have liminf,_.. r(S,) = s. Define
limsup r(S) similarly.

THEOREM 1. Leth =2. Let A* = (s1,,..., o) be an asymptotic union system
of order h. If iminf r(S)=2, then limsup r(S) ==,

Proor. Since r(S)=0 or 1 for only finitely many sets S & F(N), it follows
that the condition of the Lemma holds for all d =1, and Theorem 1 follows
immediately.

THEOREM 2. Let h =2. Let of be an asymptotic union basis of order h. Then
limsup r(S) = .

Proor. If liminf r(S)= 2, the result follows from Theorem 1.

Suppose liminf r(S)=1. Then r(S)=1 for infinitely many sets S € &. Let
r{S)=1forsome SZFJ. 1f S = A, U---U A, is the unique representation of S
as a union of h elements of &/, then A, =---= A, =S &€ . Thus,if TE S then
T . In particular, if | S|= 2 and x € S, then {x} & /. Since <« is an asymptotic
basis, it follows that {n} € & for all but at most finitely many n € N. Thus, there
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are at most a finite number of sets S such that r(S)=1 and | S| = 2. Therefore,
the condition of the Lemma holds for all d =2, and Theorem 2 follows
immediately.

3. Multiplicative bases and LCM bases

THEOREM 3. For h =2, let M(h) consist of all pairs (s,t) such that

s =liminf gz (n) and t=limsup ggz(n)

for some asymptotic multiplicative system B = (B,,..., B,) of order h. Then
M) ={1, 0l teNU{s®)]s=1,...,h}
In particular, if s =2, then t = .

PrRooF. Let tENU{x}. Let B=(B),...,B,), where B,=N, B,=
{2|0=k<t},and B ={1} for i =3,...,h. Then 1= ga(n)=1 for all n EN,
and ga(n)=1for n odd, hence liminf,_.. ga(n)=1. 0= u < t and 2" || n, then
n=(n-2"%)-21---1for 0=k =u and ga(n)=u+1. If ¢ is finite, choose
u=t—1, and if t=oc, choose u arbitrarily large. In both cases,
lim sup,, ... gz (n) = t. Therefore, (1,t)& M(h) for all t EN U {o}.

For s €{2,...,h}, let B =(B,,...,B,) be the system defined by B, =N,
B =PU{l}fori=2,...,s,and Bi={l}fori=s+1,...,h Then gz (n)=s for
all n22, and ga(p)=s for all p €P. If n has k distinct prime factors, then
gz(n)= k. It follows that limsup,_ .. gz (n) = . Therefore, (s,)&E M(h) for
2=ss=h

If B =(B,,...,B,)is any multiplicative system, and if p EP, p > p,, then the
only representations p = b,b, - - - b, are those of the form b, = p and b, =1 for
i# ). Therefore, 1 =ga(p)=h and s =liminf, ... gz (n)E{1,..., h}.

It only remains to prove that s 22 implies t =c. Let B =(B,,...,B,) be a
multiplicative system with s =2. Let QO be the set of positive, square-free
integers. For q € Q, let

S(q)={pEP|p|q} [P
Define
d, ={S(q)lg€ 0 N By}

Then of; C[P]™. Let * =(dA,,..., ). Applying the Lemma with X =P, we
observe that every S € [P]™” is of the form S = S(q) for some q € Q, and the
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condition gg(n)=2 for all n > n, implies for every d 1 and all but at most
finitely many S € [P} the set theoretic equation S = A, U - - - U A, with A, € o,
has at least two solutions. The Lemma implies that for every n €N there is a
square-free number g such that gz(q)=n, and so limsup,_.. gz (n) ==. This
proves the Theorem.

The following result was first obtained by Erd&s [2] and Nesetfil and Riid! [6].

THEOREM 4. Leth =2, and let B be an asymptotic multiplicative basis of order
h. Let g(n) denote the number of representations of n in the form n = b\b,- - - by,
where b, € B for i =1,..., h. Then limsup,_.. g(n)=o.

Proor. If liminf,_.. g(n)= 2, the result follows immediately from Theorem
3.

Suppose liminf,_..g(n)=1. If g(n)=1, then n=»b" for some b€ B. If
n >n, and n is square-free, then g(n)=2. It then follows, as in the proof of
Theorem 3, that for every k there is a square-free number n such that g(n)= k,
and so limsup,_.. g(n)= . This proves the Theorem.

Analogous results hold for asymptotic LCM systems and bases.

THEOREM 5. Let h=2, and let B =(B,,...,B,) be an asymptotic LCM
system of order h. Let g »(n) denote the number of representations of n in the form
n=[bi,...,b.], where b, € B, fori =1,..., h. Then liminf,_.. g&a(n)=2 implies
that imsup,_... ga(n) =,

Proor. It suffices to consider only square-free numbers g € Q. To each
square-free number q there is associated a finite set S(q) ={p EP I plq}in[P]"
such that if ¢ =(qi,...,q.], then S(q)= S{q,)U---US(q.). Now apply the
Lemma exactly as in the proof of Theorem 3. Note that it is important in the case
of LCM systems that the Lemma does not assume that the sets S(g;) are pairwise
disjoint.

THEOREM 6. Let h =2 and let B be an asymptotic LCM basis of order h. Let
g'(n) denote the number of representations of n in the formn =[b,, ..., b.], where
b,€B fori=1,...,h Then limsup,..g'(n)= .

Proor. If liminf,_.. g’'(n)=2, the result follows from Theorem 5.

Suppose liminf, .. g'(n)=1. Since B is an asymptotic LCM basis, it follows
that p € B for all but a finite set F of primes p. If n>1 and g'(n)=1, then
n€B and n =|n, ..., n] is the unique representation of n as the least common
n,and p# n, then pZ B.

multiple of elements of B. In particular, if p is prime, p
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It follows that if g'(n) =1 and n is not prime, then n is composed only of primes
belonging to the finite set F. Therefore, there exists g, such that if q is
square-free, ¢ € P, and g > q., then g'(q) = 2. An application of the Lemma now
yields the result.
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