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ABSI R A C I  

t o t  h > 2 ,  a n d  let ?B (B  . . . . . .  B,, ), w h e r e  B, C N = {1 .2 ,3  . . . .  } f a r  - I  . . . . .  It. 
D e n o t e  by ge  (n )  lhe  n u m b e r  of r e p r c s e n l a t i n n s  of n in the f o r m  n b, • •. b,,, 

w h e r e  b, ~ B,. If g,, (n )  "- 0 for  all n "-. n,., t hen  :'B is an  asymptotic multiplicatiue 
system of order h. T h e  set F/ is an  asymptotic multiplicatit'e basis of order h if 

n = b, . .  • b, is so lvab le  w'ith b, C B for  all n > n..  D e n o t e  by  g ( n )  the  n u m b e r  

of such  r e p r e s e n t a t i o n s  of n. Let  M ( h )  be  the  set of all pa i r s  (~,t) ,  w h e r e  

,s = lira inf . . . .  g~ (n )  a n d  t = lira sup  . . . .  g,~ (n )  for  s o m e  mul l ip l i ca t ive  sy s l em :'B 

of o r d e r  h. It is p r o v e d  lhal  

M(/, ) - { ( l ,  t)!t e y }  u {(s, ~-) ! ~ -: 1 . . . . .  h}. 

In p a r t i c u l a r ,  it fo l lows lha t  s -'-" 2 impl ies  t = ~. A c o r o l l a r y  is a t h e o r e m  of 

E r d 6 s  tha t  if B is a mul t ip l i ca t ivc  basis  of o r d e r  h -> 2, t hen  lira sup  . . . .  g ( n  ) = ~.  

S imi la r  resul t s  a re  o b t a i n e d  for  a s y m p t o t i c  u n i o n  bases  of f ini te subse t s  of N a n d  

for  a s y m p l o t i c  least  c o m m o n  mul t ip le  bases  of in tegers .  

I.  I n t r o d u c t i o n  

Let  N = { 1 , 2 , 3  . . . .  } d e n o t e  the set  of natural  n u m b e r s .  For  h > 2 ,  let  

:~ = (B~, Be . . . . .  B~, ) be  an I i - tuple  of su b se t s  B, C_ N for i = 1 . . . . .  h. D e n o t e  by 

g e ( n )  the  n u m b e r  of  r e p r e s e n t a t i o n s  of  n in the  f o r m  

(1) n = b~b:.., b~, 

w h e r e  b~ E B, for i = 1 . . . . .  h. If g a ( n ) > ( )  for all suf f ic ient ly  large n, then  o~ is 

an asymptotic multiplicative system of order tl. 
If B is a set  of  natural  n u m b e r s  such  that the  h - t u p l e  ~ = (B,B . . . . .  B) is an 

a s y m p t o t i c  m u l t i p l i c a t i v e  s y s t e m  of  o r d e r  h, then  the  set  B is ca l l ed  an 

asymptotic multipticative basis of order h. If e v e r y  n _-> I can be  r e p r e s e n t e d  in the  
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form (1) with b~ E B for i = 1 . . . . .  h, then B is a multiplicative basis of order h. 
Erd6s [2] and Negetfil and Riidl [6] proved that if B is a multiplicative basis of 

order h, then limsup,~= g~ ( n ) =  ~. This is the multiplicative analog of an old 

problem in additive number theory. For B C_ N U {0}, let f(n) denote the number 

of representations of n in the form n = b~ + b2, where b~, b2 E B. Erd6s and 

Turfin [3] conjectured that f ( n ) >  0 for n > no implies lim s u p , ~  f(n)--oo.  The 

conjecture is still unsolved. 

In this paper I generalize Erd6s's theorem on multiplicative bases to the case 

of asymptotic multiplicative systems. It is possible to construct h-tuples ~ = 

(B~ . . . . .  B~) such that 

O<l iminf  g~ (n) ~ limsup g¢~ (n) < oo. 

Here are two examples. Partition the set P of primes into h pairwise disjoint sets 

P~ . . . . .  P,,  and let B~ be the set of all n E N such that if p E P and p I n, then 

p G P,. Every natural number n has a unique representation in the form (1), and 

so g ~ ( n ) =  t for all n _-> 1. 

A second example: Let ~ = ( B ~  . . . . .  B,),  where B~=N,  B:={1,2},  and 

B, = {1} for i -- 3 . . . . .  h. Then g~ (n) = 1 if n is odd and g~ (n) -- 2 if n is even. 

These examples show that l i m i n f , _ ~ g ~ ( n ) ~ l  does not imply that 

limsup . . . .  g: , (n)=oo.  Let M(h) consist of all pairs (s,t) such that s =  

lim inf,_~ g ,  (n) and t = lim sup,_~ g~ (n) for some asymptotic multiplicative 

system ~ of order h. The principal result of this paper is the explicit description 

of M(h), In particular, it follows from this characterization of M(h) that 

liminf._~g~(n)_->2 implies that l i m s u p , ~ g ~ ( n ) = o o .  Erd6s's theorem on 

multiplicative bases is an immediate corollary of this result. 

In this paper I also consider asymptotic union bases. Let ~(N)  denote the set 

of all finite subsets of N, and let ,~/~ C_ o%(N) for i = 1 . . . . .  h. If for all but at most 

finitely many S E ~(N)  there exist sets A~ E .ff~ such that 

(2) S = A, U . - .  U Ah 

then M* -- ( ~  . . . . .  ~/,) is an asymptotic union system of order h. If ~/, = sg C_ 

~(N)  for i = 1 . . . . .  h, then ~/ is  an asymptotic union basis of order h. Union bases 

have been studied by Deza and Erd6s [1], Grekos [4], and Nathanson [5]. 

Partition N into h pairwise disjoint sets N~, let ~, denote the set of all finite 

subsets of N~, and let ~ / * =  ( ~  . . . . .  ~/,). Then every S ~ ~(N)  has a unique 

representation in the form (2). 

Let M* be an asymptotic union system of order h, and let r(S) denote the 
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number of representations of S in the form (2). Let ~(N) = {S,}]=~. I shall prove 

that if liminf,_~ r ( S , ) > 2 ,  then limsupn_~ r(S,)  = ~. 

The problem of representing a finite set as the union of h subsets is identical to 

the problem of representing a square-free integer q as the least common 

multiple of h divisors of q. This observation leads to the study of least common 

multiple bases for the integers. Let ~ = (B~ . . . . .  Bh), where B~ C_N for i =  

1 . . . . .  h. If every sufficiently large integer n can be represented in the form 

(3) n : [b~ . . . . .  bh] 

where b~ ~B~ for i =  1 , . . . , h  and [b~ . . . . .  b~] denotes the least common 

multiple (LCM) of the integers b~, then ~ is an asymptotic LCM system of order 

h. If ~ is an asymptotic LCM system such that B, = B C_ N for all i = 1 . . . . .  h, 

then the set B is an asymptotic LCM basis of order h. Nathanson [5] introduced 

LCM bases and nonbases. 

Let ~ be an asymptotic LCM system of order h, and let g~(n) denote the 

number of representations of n in the form (3). I shall prove that 
• t ~ t . lim mf~ ~ g ~(n ) = 2 implies lim supn _~ g :~(n ) = 

Notation. Let N denote the set of natural numbers and P the prime numbers. 

For n E N and p E P, write pk [I n if pk is the highest power of p that divides n. 

Let X be a countably infinite set. If S C_ X, let t SI denote the cardinality of S. 

For d E N U {0}, let [X] d denote the collection of all S C_ X with IS1 = d. Let 

IX] <'° denote the set of all finite subsets of X. Thus ~ ( N ) =  [N] <'°. 

2. Ramsey's theorem and union bases 

The main tool used in this paper is the following lemma, which is an 

application of Ramsey's theorem in combinatorial analysis. The lemma is a 

refinement of a result of Ne~etfil and Rfidl [6]. 

LEMMA. Let h > 2, let X be a countably infinite set, and let M* = (M1 . . . . .  ~h ), 

where M~ _C[X] <~ for i =  1 . . . . .  h. Suppose that the h-tuple M* satisfies the 

following condition : 

There exist infinitely many d E N such that for all but at most finitely many sets 

S E [X] a the set theoretic equation 

S = A I U ' "  "UAh 

has at least two solutions with 

A~ E sg~ for i : l , .  . . , h. 
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Then  for  every  n E N there is a set T E [X]  <~ with the property that  there exis t  

sets A,.k E d~ for  k = 1 . . . . .  n such  that  

for  k = l . . . .  , n ,  and  

T = Al .k  U • • • U Ah,k 

Ai, k f l  Aj, k = Q 

for  1 < i < j N h .  

PROOF. Let  n ~ N .  Choose  d ->  n such that  the condi t ion of the L e m m a  

holds for  sets S E [X] d. 

For  r = 0 ,  1 . . . . .  d, let 

where  for S E [X] '  

h 

[ x l  ' =  U c: 
i =11 

h 

C,, i f S ~  U d,. 
S E  i=1 

C[ if S E ~, .  

R a m s a y ' s  t h e o r e m  implies that  there  is an infinite subset  Y C_ X such that  [ Y]" is 

h o m o g e n e o u s  with respect  to the sets {C~}~=,, for r = O. 1 . . . . .  d. This  means  that  

for  each r there  is an i such that  [Y]" C_ C~. 

Since d satisfies the condi t ion of the L e m m a ,  there  is a set S ~ [ y]d  such that  

there  exist sets A .  A'~ E d~ for i = 1 . . . . .  h. where  

S = A ,  U " "  U A .  = A ' I U " "  UA ; .  

and A , ~ A :  for some i. Let  d, = I A , [  and d ' , = l A : l  for i = 1  . . . . .  h. Then  0 -  < _ 
t ~ h &, d ~ _  <- d for all i, and d = E , ~  d~ and d =<~Zh=~ d'~. (Note that  the L e m m a  does  

not assume that  the sets A~ or A'~ are pairwise disjoint.)  

Since A~ ~ [ Y]< and A'~ E [ Y]<, the homogene i ty  of [ Y] '  for  r = 0, 1 . . . . .  d 

implies that  

[Y]  < u [ Y ] " ; c  .~/, 

for all i = l  . . . . .  h. 

Suppose  that  d, => 1 and & => 1 for  some  1 _-< j < k <_- h (or, respect ively,  that  

d,  ->_ 1 and dk => 1 for some  1 < j < k < h). Let  e = V,~=, d, > d. Choose  T E [Y] ' .  

For  each represen ta t ion  T = U~=, T, with [ T , t =  d, for  each i, the sets T~ are 
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pairwise disjoint and satisfy T~ E [Y]<  C_ M~. The number of such representa- 

tions is the multinomial coefficient 

(d  e ) > e > d > n .  
t ,  . . . , d h  = - ~  = 

Suppose that dj = d and d~ = 0 for i ~ j, a~d also that d ~, = d and d'~ = 0 for 

i~" k. Since A ,~  A; for some i, it follows that ] ~  k. By the homogeneity of [Y]~, 

the fact that A~ = A ~ = S E [ Y]' implies that 

[Y ] "  c_ .~.¢, r~ ..~. 

Choose T E [ Y ]  -'a. Every partition of T into two disjoint sets T, and Tk with 

I ~1 = I Tkl = d generates a representation T = I...J~=, T,, where T, = O E d,  for 

i / j ,  k and T, Eagj and Tk E oq/~. The number of such representations is the 

binomial coefficient 

This proves the Lemma. 

Let M* =(.~1 . . . . .  M~) be an h-tuple of sets .~/, C ~(N). For 8 E ~(N), let 

r(S) denote the number of representations of S in the form S = A~ U . . .  U A~, 

with A~ E.d ,  for i = 1 . . . . .  h. Define l i m i n f r ( 8 ) =  s if for any sequential 

ordering of ~(N)  in the form ~(N)  = {&}~=, we have lira inf,_~ r(8, ) = s. Define 

lim sup r(S) similarly. 

THEOREM 1. Let h >= 2. Let M* = (,~1~ . . . . .  .~4~, ) be an asymptotic union system 
of order h. I f  l iminfr(S)=>2,  then l i m s u p r ( S ) = ~ .  

PROOF. Since r(S) = 0 or 1 for only finitely many sets S E if(N), it follows 

that the condition of the Lemma holds for all d ~ 1, and Theorem 1 follows 

immediately. 

THEOREM 2. Let h >= 2. Let ,~l be an asymptotic union basis of order h. Then 
lira sup r( S) = ~. 

PROOF. If lira inf r(S)_>-2, the result follows from Theorem 1. 

Suppose liminf r (S)= 1. Then r (S)= 1 for infinitely many sets S E M. Let 

r(S) = 1 for some S ~  Q. If S = A~ O • • " U Ah is the unique representation of S 

as a union of h elements of ,,q, then A~ . . . . .  At. = S E ~/. Thus, if T ~  S then 

T E  .d. In particular, if IS! ~ 2 and x E S, then {x} E J .  Since d is an asymptotic 

basis, it follows that {n} E ,'~ for all but at most finitely many n E N. Thus, there 
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are at most  a finite n u m b e r  of sets S such that  r(S) = 1 and I S] _--- 2. The re fo re ,  

the condi t ion of the L e m m a  holds for  all d->_2, and T h e o r e m  2 follows 

immedia te ly .  

3. Muitiplicative bases and LCM bases 

THEOREM 3. For h ->_2, let M(h)  consist of all pairs (s,t) such that 

s = l i m i n f g ~ ( n )  and t = l i m s u p  g~(n) 

for some asymptotic multiplicative system ~ = (B, . . . . .  B . )  of order h. Then 

M(h)  ={(1,  t ) t t  UN}U{(s,  oo) ls = 1 . . . . .  h}. 

In particular, if s >= 2, then t = ~. 

Pf~oov. Let  t ENU{oo}.  Let  ~ = ( B ~  . . . . .  B , ) ,  where  B I = N ,  B2 = 

{2 k 10-<_ k < t}, and B~ ={1} for i = 3  . . . . .  h. T h e n  1 <= g~(n)<-t  for  all n E N, 

and g~ (n)  = 1 for  n odd,  hence  lira inf,~= g~ (n)  = 1. If 0 _-< u < t and 2" II n, then  

n = ( n  .2  k ) ' 2k  " 1 ' ' "  1 for  0 - -  k --- u and g ~ ( n )  = u + 1 .  If t is finite, choose  

u = t - l ,  and if t =o% choose  u arbi t rar i ly  large. In  bo th  cases,  

lira s u p , ~  g~ (n)  = t. The re fo re ,  (1, t) E M(h)  for  all t E N U {oo}. 

For  s E{2  . . . . .  h}, let ~ =(B~ . . . . .  B , )  be  the sys tem defined by B I = N ,  

B~ = P U {1} for i = 2 . . . . .  s, and  B~ = {1} for  i = s + 1 . . . . .  h. T h e n  g~ (n )  >= s for  

all n _-> 2, and g~ (p)  = s for  all p ~ P. If n has k distinct p r ime  factors,  then  

g~ (n)  >_- k. It follows that  lim sup.~= g~ (n)  = ~.  The re fo re ,  (s, ~)  E M ( h )  for  

2<=s<=h. 

If ~ = ( B 1 , . . . ,  Ba) is any mult ipl icat ive system, and if p ~ P, p > p0, then  the 

only represen ta t ions  p = bib2" • • bh are those of the fo rm bj = p and b~ = 1 for  

i ~  j. The re fo re ,  1 <= g~ (p)  = h and s = lim inf,~= g~ (n)  E {1 . . . . .  h }. 

It  only remains  to p rove  that  s >= 2 implies t = o0. Let  ~ -- (B~ . . . . .  B , )  be  a 

mult ipl icat ive sys tem with s >=2. Let  Q be  the set of posi t ive,  square - f ree  

integers.  For  q ~ Q, let 

S ( q ) = { p  E P [ p [ q } ~ [ P ]  <~. 

Define 

s~ = {S(q)l q E Q N B,}. 

T h e n  ~1~ C [P]<~. Le t  ~1" = (~1 . . . . .  J h ) .  Apply ing  the L e m m a  with X = P, we 

obse rve  that  every  S E [P]<~ is of the fo rm S = S(q) for  some  q ~ Q, and the 
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condition g ~ ( n ) - 2  for all n > no implies for every d ~ 1 and all but at most 

finitely many S E [P]~ the set theoretic equation S = A~ U - • • U Ah with A, E M~ 

has at least two solutions. The Lemma implies that for every n E N there is a 

square-free number q such that g~ (q)->_ n, and so lim s u p . ~  g~ (n) = o0. This 

proves the Theorem. 

The following result was first obtained by Erd6s [2] and Negettil and Riidl [6]. 

THEOREM 4. Let h >= 2, and let B be an asymptotic multiplicative basis of order 

h. Let g(n)  denote the number of representations of n in the form n = b~b2" • • b,, 

where b, E B for i = 1 . . . . .  h. Then lim sup,_~ g(n)  = ~. 

PROOF. If liminf,_~ g(n)_--> 2, the result follows immediately from Theorem 

3. 

Suppose l i m i n f , _ ~ g ( n ) = l .  If g ( n ) = l ,  then n = b "  for some b E B .  If 

n > no and n is square-free, then g ( n ) = 2 .  It then follows, as in the proof of 

Theorem 3, that for every k there is a square-free number n such that g(n)>= k, 

and so i i m s u p , ~  g(n )=  oc. This proves the Theorem. 

Analogous results hold for asymptotic LCM systems and bases. 

THEOREM 5. Let h >-2, and let ~ =(B~ . . . . .  B , )  be an asymptotic L C M  

system of order h. Let g ~(n ) denote the number of representations of n in the form 

n = [b~,. b,], w h e r e b ~ E B ~ f o r i = l ,  h. Then h m l n f , ~ g ~ ( n ) = 2  implies 

that lira s u p , ~  g ~( n ) = oo. 

PROOF. It suffices to consider only square-free numbers q E Q. To each 

square-free number q there is associated a finite set S(q) = {p ~ P I P  I q} in [P]<O 

such that if q =[q~ . . . .  ,qh], then S ( q ) = S ( q ~ ) O . . . O S ( q , ) .  Now apply the 

Lemma exactly as in the proof of Theorem 3. Note that it is important in the case 

of LCM systems that the Lemma does not assume that the sets S(q~) are pairwise 

disjoint. 

THEOREM 6. Let h >-_ 2 and let B be an asymptotic L C M  basis of order h. Let 

g'(n) denote the number of representations of n in the form n = [b~ . . . . .  ba ], where 

b~ ~ B  for i = 1 . . . . .  h. Then l imsup,_~ g ' (n)  = oo. 

PROOF. 

Suppose 

that p ~ B 

n E B and 

multiple of 

If l i m i n f , ~  g ' ( n ) = 2 ,  the result follows from Theorem 5. 

l i m i n f , ~ g ' ( n )  = 1. Since B is an asymptotic LCM basis, it follows 

for all but a finite set F of primes p. If n > 1 and g'(n) = 1, then 

n = [n . . . . .  n] is the unique representation of n as the least common 

elements of B. In particular, if p is prime, p [ n, and p #  n, then p ~  B. 
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It  fol lows tha t  if g ' ( n )  = 1 a n d  n is n o t  p r i m e ,  t h e n  n is c o m p o s e d  o n l y  of p r i m e s  

b e l o n g i n g  to the  f ini te  set F. T h e r e f o r e ,  t he re  exists  q,, such  tha t  if q is 

squa re - f r ee ,  q f f  P,  a n d  q > q,,, t h e n  g ' ( q )  => 2. A n  app l i c a t i on  of the  L e m m a  n o w  

yields  the  resul t .  
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